
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 4, JULY 1997 847

A Deployed Engineering Design Retrieval
System Using Neural Networks

Scott D. G. Smith, Richard Escobedo, Michael Anderson, and Thomas P. Caudell

Abstract—We describe a neural information retrieval sys-
tem (NIRS), now in production within the Boeing Company,
which has been developed for the identification and retrieval
of engineering designs. Two-dimensional and three-dimensional
representations of engineering designs are input to adaptive
resonance theory (ART-1) neural networks to produce clusters
of similar parts. The trained networks are then used to recall
an appropriate cluster when queried with a new part design.
This application is of great practical value to industry because
it aids in the identification, retrieval, and reuse of engineering
designs, potentially saving large amounts of nonrecurring costs.
In this paper, we review the application, the neural architectures
and algorithms, and then give the current status and the lessons
learned in developing a neural-network system for production
use in industry.

Index Terms—Adaptive resonance theory (ART), clustering,
design retrieval, group technology, information retrieval, neural
network.

I. PROBLEM STATEMENT

I NTRODUCING A NEW part into a manufacturing envi-
ronment can cost many thousands of dollars. This includes

expenses not only for part design, but also for associated
processes such as tool design, tool fabrication, process plan-
ning, production scheduling and control, and records and
documentation. For companies producing large customized
systems, the proliferation and maintenance of new part designs
can be very costly. Often identical designs are inadvertently
produced, wasting time and money. This happens frequently
on large systems that involve multiple teams designing parts
at different sites. One designer may have no knowledge of
another’s work unless the technology exists to classify, store,
and retrieve designs.

In industrial engineering, group technology (GT) embraces
the concept of the reuse of processes, where appropriate, in
order to conserve resources, reduce flow time, and reduce
production costs. The reuse of engineering designs is one area
of GT that has received much attention. Several studies have
attempted to ascertain the magnitude of the part proliferation
problem. Gunn [1], in an article in Scientific American, depicts
a particularly bleak picture. He estimates that “only 20% of
the parts initially thought to require new designs actually need

Manuscript received February 3, 1997; revised March 5, 1997.
S. D. G. Smith, R. Escobedo, and M. Anderson are with the Research and

Technology Organization, Integrated Support Services Division, The Boeing
Company, Seattle, WA 98124-2207 USA.

T. P. Caudell is with the Department of Electrical and Computer Engineer-
ing, University of New Mexico, Albuquerque, NM 87131 USA.

Publisher Item Identifier S 1045-9227(97)04827-3.

Fig. 1. Typical nonrecurring manufacturing steps. Crossed out figures are
the steps that can be avoided if an existing design is reused.

them; 40% could be built from an existing design and 40%
could be created by modifying an existing design.”

The results of a study [2] published in 1989 by Hyer and
Wemmerlov document the benefits of part design retrieval.
Hyer and Wemmerlov surveyed 53 U.S. manufacturing com-
panies, including several aerospace firms, that represent a wide
range of sales revenues and a broad array of product lines.
Among those companies implementing group technology in
part design retrieval, an existing unmodified design was used
in an average of 20% of the instances in which a new design
was considered. In an additional 18% of the cases, existing
designs were slightly modified instead of creating new ones.

Fig. 1 shows some of the typical nonrecurring manufac-
turing steps that must occur for every released design in
preparation for fabrication of the part. The design phase
represents only a small fraction of the cost of this process. If
a similar or duplicate design can be found before the engineer
releases a seemingly new design, a large fraction of these down
stream processes can be reused, thus saving their development
costs. In addition, if a design is reused, all of the quality issues
and documentation for that design will be reusable, improving
the general quality of the product.

Previous methods of design retrieval have often relied
heavily on indexing or coding schemes based on part features.

1045–9227/97$10.00 1997 IEEE



848 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 4, JULY 1997

Unfortunately, systems based on these methods have proved
cumbersome to create, maintain, and use. Also, they are labor-
intensive and lack the capability to comprehensively include a
large variety of relevant shapes and attributes. Methodologies
such as relational databases, object-oriented systems, and
feature-based expert systems, have been applied to the part
design retrieval problem, with similar results.

For GT to be optimally successful, it is necessary that
it be as painless as possible to integrate into the existing
environment. The application should be largely transparent to
the user, who must be able to query the database and relate the
representations contained therein to similarly configured part
designs with minimal involvement.

In the following sections, we review a neural-network
solution first described in Caudellet al. [5]. In the latter
sections, we give the current status of this system and share
some of the practical leasons learned in deploying a large
industrial neural network.

II. NEURAL- NETWORK ARCHITECTURE

We use the adaptive resonance theory (ART) neural-network
model developed by Carpenter and Grossberg [3]. The version
of this model that processes binary input patterns is referred
to as ART-1. The ART-1 neural-network model is represented
by a set of coupled ordinary nonlinear differential equations
[3]. If appropriate assumptions are made about the relationship
between the learning rates, the dynamical time constants, and
presentation times, this system of equations can be reduced
to a procedural algorithm [4]. This “fast learning” mode of
operation requires that the learning process stabilize on an
input pattern before the next one is presented.

This algorithm implements self-organized, or unsupervised,
learning, grouping binary input patterns into clusters of similar
patterns. The number of clusters is not preset at the beginning,
but is determined by the distribution of input patterns used
during training. The number of clusters is also affected by a
small set of network parameters, the most significant of which
is the vigilance value.

Two-dimensional (2-D) and three-dimensional (3-D) engi-
neering designs are extracted from CAD systems and con-
verted to binary patterns for input to the ART-1 neural
networks. After training, the neural networks are used as a
“neural database.” The engineer queries the trained networks
with a new part design. The closest cluster is found and the list
of part designs within this cluster is returned to the engineer
to decide if any is close enough for direct reuse or minor
modification.

Hierarchies of ART-1 networks are used to allow matching
of parts at multiple levels of similarity. The ability to select
the degree of similarity at retrieval time is accomplished by
training a tree of ART-1 networks in which higher levels in
the tree are trained with larger vigilance values (Fig. 2). The
training occurs by first presenting all of the input patterns to the
ART-1 network with the lowest vigilance value. When training
is stabilized on this network, the next level of the tree is trained
by presenting all of the patterns in a cluster to a new ART-1
network with the next larger vigilance value. This process is

Fig. 2. An example of an ART Tree database structure. Each cube represents
an ART-1 neural network.

Fig. 3. The macrocircuit of ART-1 modules that implements a feature
selection option.

repeated, thus forming a tree in which the networks at the top
of the tree have the greatest discrimination, while the one at the
bottom has the least. When a query occurs, the lowest ART-1
module places the design into one of its clusters. Clusters at
this level represent the most general abstraction of the designs
stored in the system. After the system has selected a winning
cluster at the first level, the appropriate ART-1 module within
the next level is activated, if necessary. This module in turn
classifies the design into one of its clusters, and the process
repeats. The user selects the level of abstraction at retrieval
time according to the requirements of the current design.

An additional feature of our system allows users to query the
database for designs that have the same general shape, and then
to further discriminate these according to design features such
as the location of bends or fastener holes. The implementation
of a feature selection option strongly affects the neural-network
architecture, and is implemented here as a loosely connected
collection of ART-1 modules called a macrocircuit.

Fig. 3 gives the details of how sets of three ART-1 modules
are connected to implement a feature selection option. The
detailed structure of this macrocircuit evolves during the train-
ing process, where a training set of part designs is repetitively
presented to the networks. Within this macrocircuit, the shape
representation is considered first by the bottom “shape” ART-1
module. For each cluster formed by this module, an additional



SMITH et al.: DEPLOYED ENGINEERING DESIGN RETRIEVAL SYSTEM 849

(a) (b) (c)

Fig. 4. Three representations of features of a design: (a) the silhouette of
the part, (b) the location of fastener holes, and (c) the location of bend lines.
Each of these is converted into a linear binary vector for input to the neural
networks.

pair of ART-1 modules, the “holes” and the “bends” modules,
is spawned for secondary training. The top of this structure
in Fig. 3 represents those parts that satsify both the holes and
bends requirements. It is the intersection of the two lists below
it. This architecture gives the user the ability to discriminate
on 1) shape alone; 2) shape and holes; 3) shape and bends; or
4) shape, bends, and holes.

III. I NPUT REPRESENTATIONS

In this application, the neural networks are trained on part
design representations derived directly from graphical descrip-
tions generated by CAD systems. Before the representations
can be created, the parts must be moved to a standard position
and orientation. First, the center of mass of the part is used to
shift the part to a common origin. The moments of inertia are
then used to determine the principal axes of the part, which
define a standard orientation. See [5] for the details of this
process.

For a 2-D design, the simplest input representation is a
binary pixel map, or silhouette, centered in a coordinate
system: “on’s” (1’s) where there is solid material and “off’s”
(0’s) where there is none. An example is shown in Fig. 4(a).
The resolution of the representation must be chosen to resolve
the finest salient features in any design to be stored in the
system, and is generally set empirically. Currently, we are
using a resolution of 400 by 400 binary pixels.

Other forms of design information may be represented as
binary patterns, as well. For example, Fig. 4(b) illustrates how
the position of fastener holes can be represented in a different
array with dimensions the same as the shape silhouette, this
time with “on’s” in the neighborhood of a hole, and “off’s”
otherwise. A bend in the metal can be represented by plotting
the line of the bend within a 2-D array [Fig. 4(c)].

The representation of 3-D designs requires more consider-
ation than the simple silhouettes presented above. The logical
extension of this method would be a binary “voxel” map,
where a voxel is defined to be a volume or 3-D pixel. The
design would be represented in a 3-D array. In this array,
a voxel value of one represents the presence of material,
while a zero represents air. For a reasonable resolution of
400 400 400 voxels, however, the length of the binary
vector becomes 64 000 000 b! In addition, this representation
is computationally extremely complex. Instead, we use a
different approach.

Fig. 5. Polygon parameter representation.

In CATIA, polygonal surfaces are used to generate 3-D
designs. The plane of a polygonal face can be represented
by the values of and in the equation

where the constants are chosen to satisfy the
equation . We decided to utilize this
information by representing each such polygonal surface, or
“facet,” as a point in 4-D space (Fig. 5). The
many polygons that constitute the surface of a 3-D part will
then form a constellation of points in 4-D space. Alternatively,
the area of the facet can also be coded, resulting in a 5-D
representation. At useful resolutions, there are far fewer points
in this representation of a part than “on” voxels in the volume
representation. This representation is also much faster to
compute.

One obvious weakness of this sparse-polygon parameter
space is that the shapes of the polygons are unrepresented.
The effect that this has on the ability to accurately match and
retrieve similar parts is still being evaluated.

IV. TRAINING THE NEURAL DATABASE

The training of the neural database takes place off-line
by first moving the design data onto the workstation and
running a program which loops over all of the designs, building
representations for all of the parts. These representations
are saved into a file so that only new designs need to
be parsed when the database is updated. After all of the
designs are parsed the neural networks are trained using the
representations created. The input patterns are presented to the
ART-1 networks in ascending size, where size is measured by
the L1 norm. Georgiopouloset al. [6] have shown that this
order minimizes the number of training presentation epochs
needed for the networks to stabilize. Currently, the ART-1
hierarchy is trained with five levels of similarity. The training
parameters, neural-network “memories,” and cluster member-
ship lists are saved to a file which forms the neural database.
This file is moved to the platform used to host the neural
database.

V. QUERYING THE NEURAL DATABASE

Querying the neural databases can be performed in either
of two ways. For a query with a part design, a binary
representation is first created, using the methods described in
Section III. NIRS then uses this representation to look for a
match. If a cluster is located that is sufficiently similar, the list
of parts in this cluster is returned to the user.



850 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 4, JULY 1997

Alternatively, the part number of an existing part can be
used as a query. In this case, the database is searched for the
cluster that contains that part number. If one is found, the other
part numbers in this cluster are returned. In either case, the
primary feature used for the searches is the shape of the part.
The searches can be further constrained by any combination
of the features fastener holes, bends, and manufacturing data
(e.g., material, finish, stock size).

Several user interfaces have been built to enable engineers
to query the system. The user interfaces allow the engineer
to indicate the part geometry or part number with which to
query, specify additional query constraints and the level of
similarity, view lists of returned part numbers, and compare
the geometry of the returned parts.

A. PC Interface Using CADKEY

With this interface the NIRS code and the neural database
reside on a dedicated file server, allowing multiple users access
to the system across a local area network. The designer creates
geometry using CADKEY and then invokes the NIRS user
interface from a DOS shell. This allows the user to specify
the query constraints and whether the system should return
manufacturing data and/or geometry in addition to the list
of similar parts. The interface communicates with the remote
server, which performs the query and returns data to the user’s
PC. The response time for a query on the PC stations is
under 30 s. Graphical sketches of the returned part designs
are in CADKEY format allowing the user to load them into
CADKEY for comparison and analysis.

B. Mainframe Interface Using CATIA

This interface allows engineers to interactively perform
queries while within CATIA. A first screen allows the engineer
to select from multiple neural databases and to specify the
query parameters. The engineer is able to query using a part
number, a solid model, or 2-D geometry from the current
workspace. NIRS returns a list of similar parts on a second
screen. The engineer is then able to make selections to get
overlays of the geometry or to view additional information
about the parts. The solid models of the similar parts are
retrieved directly from the repositories that store the released
designs.

C. World Wide Web Interface

This interface allows users on the corporate Intranet to fill
out an HTML form that specifies the query constraints. The
web server processes the form using a CGI-bin script that
loads the neural database, performs the query, and formats the
response as HTML that is returned to the user. Returned part
geometry is imbedded as small in-line images, which can be
selected to generate larger images of the parts.

VI. SYSTEM STATUS

The neural databases are currently trained on a SUN
SPARCStation 10 workstation. There are two CATIA
production databases on the mainframe, one for solid models

and one for 2-D geometry. The production solid model
database currently has over 55 000 parts, while the 2-D
database has 95 000. There are also a number of customized
databases for individual design groups.

It is now accessible by several thousand engineers within
the state of Washington, with plans to include other Boeing
sites in the future.

There is an ongoing study of representation issues, user
feedback, and overall system performance as we strive to fine-
tune the system for maximal benefit to the user community.

VII. L ESSONSLEARNED AND CONCLUSIONS

The development of this project has provided a variety of
“lessons learned” in practical system deployment. Foremost is
the necessity of close communication with the end users of
the system during the entire development. Weekly informal
meetings were held to discuss project status, user feedback,
refinements to specifications, problems encountered, and prob-
lem resolution. There were also periodic, more formal “design
reviews.” Several initial requirements were modified or deleted
by the customer, while others were added. In addition, the user
interface and the information returned to the user evolved over
many versions. Continuous, interactive communication with
the end user was indispensable in ensuring the development
of a product that closely met the needs of the intended users,
increasing the chance that it would be welcomed by the
engineering design community when placed into production.
Flexibility on the part of the development team was necessary
to respond to the changing, evolving design requirements.
All of this was essential since building a comprehensive
requirements document up front was not possible given that the
users did not know the capabilities of the technology nor did
they have experience with any comparable retrieval system.

Another important consideration when developing a produc-
tion neural-network system is that most of the development
time and effort is likely to be spent on nonneural-network
issues. One of the most difficult portions of the design re-
trieval system to develop was the module used to parse
the CAD designs and determine the geometry of the parts.
This involved complex algorithms to locate, recognize, and
determine connectedness of primitive graphical entities, such
as lines and arcs. Other neural networks could be used to
aid in this process, particularly when attempting to extract
feature information from designs that predate the application
of CAD technology, such as those found on blueprints, mylar,
or microfilm.

Memory constraints and performance requirements were
a continual driving force behind the development of NIRS.
A large amount of time was spent in optimizing the code
for memory usage and speed so that it could be deployed
on existing workstations and personal computers. This was
essential for deploying into the engineering environment, since
acquiring new high-end or special purpose hardware platforms
was out of the question.

We will soon complete the transfer of the system reponsi-
bility to another group that is chartered, staffed, and funded to
maintain large production-level systems. In order to smoothly



SMITH et al.: DEPLOYED ENGINEERING DESIGN RETRIEVAL SYSTEM 851

effect technology transfer, it is best for the developers to iden-
tify early the appropriate group within their company. Working
with this group as early as possible, holding regular meetings,
developing a transfer schedule, conducting code walkthroughs,
and incrementally transfering responsibility plays a major role
in making the transfer possible and effective.

In conclusion, we have shown by way of example that
neural information systems have reached a level of maturity
suitable for use in large-scale industrial applications. In this
process we have found it necessary to expend much time
and effort on such issues as scalability, preprocessing of data,
representation, optimization, system compatibility, and close
continual coordination with all affected parties, especially the
intended end-users.

ACKNOWLEDGMENT

The authors would like to acknowledge the assistance and
support of D. Campbell, K. Chalfan, M. Healy, T. Murphy, M.
Peterson, R. Scott, and S. C. Smith on this project. Without
their steadfast support, these systems would never have been
deployed. The authors would also like to acknowledge the
contributions of F. Holman, B. Marti, C. Shreve, W. Smith, R.
J. Tippets, and C. Ward in taking over production responsibility
for NIRS. In assuming responsibility, they faced the daunting
task of having to comprehend, then carefully document, a
large, complex production-level system that evolved out of
the research lab.

REFERENCES

[1] T. Gunn, “The mechanization of design and manufacturing,”Sci. Amer.,
vol. 247, pp. 114–130, 1982.

[2] N. L. Hyer and U. Wemmerlov, “Group technology in the U.S. manu-
facturing industry: a survey of current practices,”Int. J. Prod. Res., vol.
27, no. 8, pp. 1287–1304, 1989.

[3] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for
a self-organizing neural pattern recognition machine,”Computer Vision,
Graphics, and Image Processing, no. 37, pp. 54–115, 1987.

[4] B. Moore, “ART-1 and pattern clustering,” inProc. 1988 Connectionist
Models Summer School, D. S. Touretzky and G. E. Hinton, Eds. San
Mateo, CA: Morgan Kaufmann, 1989.

[5] T. P. Caudell, S. D. G. Smith, R. Escobedo, and M. Anderson, “NIRS:
Large scale ART-1 neural architectures for engineering design retrieval,”
Neural Networks, vol. 7, no. 9, pp. 1339–1350, 1994.

[6] M. Georgiopoulos, G. L. Heileman, and J. Huang, “Properties of learning
related to pattern diversity in ART-1,”Neural Networks, vol. 4, pp.
751–757, 1991.

Scott D. G. Smith received the B.S.E. degree in
computer science from the University of Pennsyl-
vania, Philadelphia, in 1989.

He is now a Senior Principal Scientist in the
Research and Technology organization at The Boe-
ing Company, Seattle, WA. He leads the Adaptive
Neural Systems project, which is developing neu-
ral network technology and applications to use in
improving Boeing’s products and processes. This
project has had great success in transfering neural
network technology to production use within the
company.

Richard Escobedo received the A.B. and Ph.D.
degrees in mathematics from the University of Cal-
ifornia, Berkeley.

He was an Assistant Professor of mathematics
at The University of California and San Jose State
University, San Jose, CA. He is currently in the
Research and Technology organization of The Boe-
ing Company, Seattle, WA, doing applied research
in neural networks, with an emphasis on improving
engineering and manufacturing processes within the
The Boeing Company.

Dr. Escobedo was the chair of The Clinic on Neural Network Applications
for Manufacturing Product/Process Control in 1993.

Michael Anderson received the A.B. degree from Harvard University, Cam-
bridge, MA, in 1964, the Ph.D. degree from The Johns Hopkins University,
Baltimore, MD, in 1969, and the M.S. degree from the University of
Washington, Seattle, in 1989.

Since 1986 he has worked for The Boeing Company, Seattle, in Research
and Technology. His research interests include industrial applications of neural
networks.

Thomas P. Caudell(M’91), for a photograph and biography, see p. 474 of
the May 1997 issue of thisTRANSACTIONS.


